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Free In-Plane Vibration of Rectangular Plates

Gang Wang* and Norman M. Wereley®
University of Maryland, College Park, Maryland 20742

Based on the Kantorovich-Krylov variationalmethod (Kantorovich, L. V.,and Krylov, V. 1., Approximate Methods
of Higher Analysis, Noordhoff International, Groningen, The Netherlands, 1964, pp. 241-357), we analytically
solve for modal frequency and displacement mode shapes of in-plane vibration of rectangular plates with free
and clamped boundary conditions. Free and clamped boundary conditions do not allow closed-form solutions
from partial differential equations. We develop analytical expressions of plate mode shapes consisting of a linear
combination of progressive waves with unknown wave amplitudes. We then use these to calculate the modal
frequencies and the wave amplitudes with analytical mode shape expressions. An iteration scheme is presented to
calculate efficiently the natural frequency and corresponding mode shape functions based on the Kantorovich-
Krylov method. Three configurations are considered: a plate with four edges clamped, a plate with three edges
clamped and one edge free, and a plate with two parallel edges clamped and the other two edges free. The
first six natural frequencies predicted by our approach are validated using NASTRAN and other analyses from
the literature. Improvements in accuracy of the first six predicted natural frequencies were achieved using the
Kantorovich-Krylov method when compared against other results in the literature.

Nomenclature

= length of plate in x direction

length of plate in y direction

Young’s modulus of plate material

plate thickness

two wave numbers in the solution of mode
shape functions

number of half-wavelengths for mode shapes
nondimensionalnormal stress in x direction
nondimensionalshear stress

) nondimensionalnormal stress in y direction
displacementin x direction

displacementin y direction

separable component of a mode shape
function for u in x direction

= separable component of a mode shape
function for v in x direction

separable component of a mode shape
function for u# in y direction

separable component of a mode shape
function for v in y direction

ratio of length in x and y direction
nondimensionallength in x direction
nondimensionallength in x direction
Poisson’s ratio of plate

density of plate

nondimensional frequency

nondimensional frequency solution in x direction
nondimensionalfrequency solution in y direction
= excitation frequency
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Introduction

REE in-plane vibration of a rectangular plate is investigated.
The transverse bending vibration of plates has received much
attention in the literature."?> Results are available for transverse
bending frequencies and mode shapes for a wide range of plate
shapes and boundary conditions. Usually, for the rectangular plate
case, plate bending mode shapes are the expansion of beam bend-
ing modes in both the x and y directions with weighted coefficients
calculated using the Rayleigh-Ritz method. The closed-form plate
bending mode shapes are available only for the Levy type of rectan-
gularplates, thatis, at least two parallel edges with simply supported
boundary conditions (see Ref. 3). However, in addition to transverse
bending or out-of-plane vibration, a plate can also undergoin-plane
vibration, namely, plane longitudinal and shear motions. Improving
the understanding of modal characteristics of in-plane plate vibra-
tions is a key goal of this paper. In-plane plate mode shapes are very
important for the analysis of complicated plate structures, such as
a folded plate in space structures* and sandwich plates’ For our
particular interests, we need to calculate the bending frequencies
and response of three-layered sandwich plate structures, where a
viscoelastic core is sandwiched between two face plates for damp-
ing augmentation. The energyis dissipatedby shear deformationsin
the viscoelastic damping core, which causes a coupling of in-plane
and bending motions for each face plate. The analysis of this type
of plate structure involves both in-plane and bending mode shapes
when using assumed modes methods. As discussedin Ref. 5, the in-
plane modes are critical when evaluating the bending frequenciesof
sandwich plates. Therefore, free in-plane plate vibration becomes
the topic of this paper. Our goal is to calculate the in-plane plate
mode shapes directly, instead of using rod mode shapes in both the
x and y directions. We have shown that these updated in-plane plate
mode shapes improve the accuracy of frequency predictions and
lower the computational cost due to the large number of rod modes
involved in our sandwich plate analysis®
Few studies have focused on the study of in-plane vibration of
rectangularplates. Closed-form solutions exist only for simply sup-
ported boundary condition cases as shown in Ref. 7. However,
clamped and free boundary conditions are typically encounteredin
applications. Recently, Farag and Pan® presented forced responses
of in-plane vibration of a rectangular plate under in-plane point ex-
citation with four-edge clamped boundary conditions. The modal
frequencies were calculated by using the first 10 assumed rod mode
shapes in both the x and y directions. This involves an eigenvalue
problem with a matrix of order 200. The analysis was validated us-
ing NASTRAN with 480 four-node plane elements. In a subsequent
study, Farag and Pan® discussed modal characteristics of a rectan-
gular plate with two parallel edges clamped, whereas the other two
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edges are either both clamped (CCCC), both free (CFCF), or one
clamped and one free (CCCF). For these rectangular plate configu-
rations, two parallel edges are always clamped. Then sine functions
can be assumed to be the one separable part in the solution of the
mode shape function. Substituting this solution into the governing
equations of motion, the two-dimensional problem can be reduced
to one-dimensional problem in terms of another part of separable
solution. An iteration scheme was developed to calculate modal
frequencies. They presented the natural frequencies for the three
boundary condition cases mentioned and each validated by using
NASTRAN solutions. The maximum error in the in-plane vibra-
tion modal frequency was 4.6% for CCCC case, 8.4% for CCCF
case, and 12% for CFCF case, in which the first eight modes were
considered. The coefficients of mode shapes were determined nu-
merically by an iteration scheme, but these coefficient results were
not presented.

In our analysis, we also examine modal characteristics of a rect-
angular plate undergoing in-plane vibration. We will calculate the
natural frequencies and the mode shapes for displacement u# and
v based on the Kantorovich-Krylov method.!”® We will directly
solve for modal frequencies and corresponding mode shapes in-
stead of using rod mode shapes to approximate both the x and
y directions. Separable solutions were assumed to solve analyti-
cally for all displacements. This method has been successfully ap-
plied to plate bending vibration analysis.'" The equilibrium posi-
tion of a mechanical system is the position corresponding to the
minimum potential energy. Thus, the problem of solving the bound-
ary value problem for the partial differential equations (PDEs) is
equivalent to the problem of finding the function minimizing the
integral of total potential energy. This equivalence enables us to
solve the PDEs by minimizing the total energy. The most familiar
method is the Rayleigh-Ritz method. However, this method pro-
vides only approximate solutions of PDEs because the assumed
mode shapes are only admissible functions. The Galerkin method
can provide good approximations for PDEs, if we can find a func-
tion such that it satisfies both the geometric and force boundaries.
Fortunately, the Kantorovich-Krylov variational method provides
a method of determining higher-order solutions for PDEs. This
method can reduce PDEs to ordinary differential equations (ODEs),
so that we can solve these ODEs to determine the mode shape func-
tions analytically. An iteration scheme is developed to calculate the
modal frequenciesand coefficients of the correspondingmode shape
functions.

Our approach for in-plane vibration analysis will be validated
using NASTRAN results and the results in Ref. 9. We will consider
three configurationsof rectangularplates: CCCC, CCCF, and CFCF
cases. The first six modal frequencies of in-plane vibration will be
calculated and compared to available results. The mode shapes will
be plotted in vector form to show the natural modes of in-plane
vibration of rectangularplates.

Analysis

In this section, we present the expressions describing potential
energy of in-plane rectangular plate vibrations under the harmonic
excitation. The variation of the total energy is shown, which corre-
sponds to the governing equations and associated boundary condi-
tions for in-plane plate vibrations. Separable solutions are assumed
for in-plane displacements # and v. Based on the Kantorovich-
Krylov'® iterative method, mode shapes and modal frequencies can
be iteratively calculated until convergenceis achieved.

System Energy and Equations
The rectangularplate is illustratedin Fig. 1. The potential energy
for in-plane vibration is

// u 2+ v 2+2 du dv
l—v2 0x dy Bxay

2
+ = (l—v)(gi g;) i| —phwz(uz—f—vz)}dxdy (1)
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Fig. 1 Schematic of rectangular plate under in-plane vibration.

We took the variation of the precedingtotal energy and performed
integration by parts, assuming that the variation of the total energy
is equal to zero. This yields the governing equations and associated
boundary conditions for in-plane plate vibration. Here, nondimen-
sional results are shown:
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where the nondimensional parameters are
¢ =x/a, n=y/b, a=a/b

Q* = pw*a*(1 —V?)/E

and the nondimensional normal forces are
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Note that Eq. (2) is the weak or variational form of the PDEs,'?

together with all possible boundary conditions existing along four
edges for in-plane plate vibration.

Solution

Determiningplate mode shapesu and v satisfyingEq. (2)is equiv-
alent to solving the boundary value problem for in-plane plate vi-
bration. We wish to find functions that exactly satisfy Eq. (2). This
gives us the closed-form solutions of in-plane plate vibration. This
method is called the Kantorovich-Krylov'® method. A numerical
scheme is used to solve a set of ODEs with associated boundary
conditions to achieve a value of zero for the variation of total en-
ergy. To do this, we assume a separable solution for displacements
u and v for a mode (mode number is neglected in all derivations):

u¢,n) =X, (HY.(n) 3)
v(g, n) = X (O)Yu () @)

If we assume that the pair ¥, and Y, are prescribed a priori, we
will obtain

Su=Y,5X, 5

Sv =Y, 86X, (6)
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Substituting Eq. (3-6) into Eq. (2) and performing integration
along n direction yields

U =0 fl ( ¢X - +a s
—oU =U= a ar——
0 d§2 dg
d?X dX,
+ bj— +b,— +b3X
l ( 1= d{z 2 daz 3

1
- f (N{YuSXu)l;:()
0

The coefficients @, and b, are

1
alzf Yuzdn
0
. f‘ 1(1+ ) de
= - V)a—Y,
2T, 2 d
1
Yu 2
03:,/ |:a—(1—) YL,+QY:|dn
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dn

1
1
blzf =(1—v)Y2dy
o 2

I
dy,
bzzf —(1+v) —Y dn—VOl(YuY)H 0
0

3 = n —Ol v
=, d 2 dn

Equation (7) corresponds to two coupled ODEs and associated
boundary conditions in terms of X, and X,. The two equations
are

+(13X )SXL, d;

)axv d¢

1
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0
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n=0

1

n=0

X, dX,
X, =0 8
ld§2 +ax T ; (8)
d’x dX
b b,— +b;X, =0 9
ld{ -+ ) & + b X )

The boundary conditionsat ¢ =0 and 1 are needed. For a clamped
edge

X, =X,=0 (10)
For a free edge
dx,
—_ X, =0 11
a, d{ +(122 ( )
dX,
b +bpX, =0 12
= daz 2 (12)

where

We now have two ODEs along with associated boundary condi-
tions in terms of X, and X,. Before we solve these, we list some
observations:

1) From the earlier expressions of coefficients, we note that
a, =—b,. This is due to the physical symmetric property of cou-
pling terms in the PDEs. Mathematically, this can be illustrated by
performing integration by parts for either a, and b,.

2) Two ODEs in Egs. (8) and (9) are coupled only if nonzero
values of a, and b, exist.

3) The boundary conditions are always coupled in terms of X,
and X, exceptin the case of a clamped edge. Therefore, it is possi-
ble to find the uncoupled mode shapes for four clamped edges if the
coupling terms in two ODEs are zero, in which a, and b, are zero.
However these mode shape functions are meaninglessbecause they
are only admissible functions. However, when a free edge is intro-
duced,uncoupledmode shapesnolongerexistbecausethe boundary
conditions [Egs. (11) and (12)] are coupled in terms of X, and X,,.

Uncoupled and coupled mode shapes were also discussed by
Farag and Pan.’ We will concentrate on solutions of coupled mode
shapes. In-plane plate vibration should be coupled for both mode
shapes of # and v because of nonzero Poisson ratio effects and shear
deformation, which is a function of both displacements « and v. We
can rewrite Eq. (8) in terms of either X, or X, as

d*‘X X

— +2p——— X, =0 13

a0 +2p i +4q (13)
or

d*X, d’X,

2 X, =0 14

a0 +2p i +q (14)

where

p = 2[—(aby/aby) + b3 /by + a3 /a,], g = azbs /a,b,
The solutions for X, and X, can be written as a wave expansion:
X, = cre 8 4,618 4 367 4 cpef? (15)
X, =d e + dye"t + dyeF + dyett (16)
Here, ¢, c,, ¢3, and ¢, are four independent wave coefficients,
and dy, d», d;, and d, can be expressed in terms of ¢y, ¢;, ¢3, and ¢4

from Eq. (8). Also, k; and k, are characteristicroots of Eq. (13) and
are given by

=-r+vVp’—gq an
ky=—p—+p*—q (18)
For plate in-plane vibration, There are two kinds of waves traveling
across the plate. One is a longitudinal wave along the x and y di-
rections; the other is a shearing wave. This means that we have two
different wave numbers as in Eqgs. (17) and (18). Because there is
no damping introducedin the system, the roots k; and k, can not be
complex numbers. The analytical expressions of mode shapes X,
and X, are given hereafterbased on the possible signs of character-
istic roots k7 and k3.
D If k2 > 0 and k7 > 0, then
X, = ¢y sinh(k &) + ¢, cosh(k &) + ¢3 sinh(k,¢) + ¢4 cosh(k,¢)
X,, = dl Sil’lh(kl ;) + dz COSh(kl ;) + dz Sll’lh(kz;) + d4 COSh(kz;)
2)If k? > 0 and k2 < 0, then
X, = ¢y sinh(k, ) + ¢ cosh(k &) + ¢ sin([k2[|¢) + ¢4 cos([k2[¢)
X, =d, sinh(k,¢) + d, cosh(k,§) + ds sin(|k;|¢) + dy cos([k,¢)
3)If k? <0 and k% <0, then
X, = cysin(lk 1) + ¢z cos(ki1¢) + e3 sin([k2]$) + ¢qcos(lka[¢)

X, =d, sin(k,[¢) + d, cos(|k;[¢) + ds sin(|k,[¢) + dy cos([k,[¢)
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4 If k2 =k% <0, then
X, = cysin(lk;[¢) + ¢y cos(lk[¢) + ¢3¢ sin([k[Z)

+c4¢ cos(lk;1¢)
X, = d; sin(lk[¢) + d; cos([k,¢) + d5¢ sin([k, [¢)

+dy¢ cos([ky[¢)

The sinh and cosh components correspond to near-field (decay)
waves and the sine and cosine components correspond to far-field
(propagation) waves as discussed by Doyle."* This mathematical
representationof mode shapes matches the properties of wave prop-
agation of in-plane plate vibration. For example, we considera plate
with a clamped edge at { =0 and a free edge at { = 1. The expres-
sions of mode shape functions X, and X, are assumed same as
the second case for k7 > 0 and k2 <0. When these functions are
substituted into corresponding boundary conditions as shown in

Eqgs. (10-12), this yields
€y
Cy —0

0 1 0 1
[ e 0 —e; 0 —l
picosh(ky) pysinh(k;) pycos(ky) —pysin(ky) | | ¢
g2 cos(ky) LC4J
(19)

qi sinh(k;) g cosh(k;) g, sin(k)

where
k% + as
ak

_kg + as

e = —
ak,

€y = —

P = ark; +ape, P2 = artky —ane;

q1 = byetk; + by, q> = briesky + by

When nontrivialsolutions of Eq. (19) are assumed the resulting four
by four determinant is a function in terms of unknown parameter
of @ only. First, we numerically determine an €2, resulting in a
zero determinant to obtain the modal frequency in the ¢ direction.
Then, the wave coefficients ¢, ¢,, ¢3, and ¢; can be solved for this
particular frequency €2, . Finally, we can construct the mode shape
functions X,, and X,. The next step is to assume that the X, and X,
pair is prescribed a priori. Similarly, we obtain

Su = X,8Y, (20)
v = X, 87, (21)

substituting Egs. (3), (4), (20), and (21) into Eq. (2) and performing
integration along the ¢ direction. This is the same procedure as we
did in the n directions. We show the final two ODEs and associated
boundary conditions:

A by (22)
1 di]z 2 d; 34y —
d’y, dy,
— Y,=0 23
gld2+g2d§ + 8 (23)
The boundary conditionsat n = 0, 1 are needed. Fora clamped edge,
Y,=Y,=0 (24)
For a free edge,
dy,
gi— +g»nY, =0 (25)
dn
dy,
fi—+ Y, =0 (26)
dn
where
| 1
1
fi :f o’=(1—v)X2de, S Zf o’ Xy dg
0 2 0
1
1 dx,
f2 = v/o\ 50((1 + V)Exu d; - Va(XVX”)lé:O

1
dx,
f22_v/0\ (02 dg_ u
f: —fl dZX”X +Q*X% )d dX”X
3 = ; d;z u u ; d; u
1
& Zf o’ X} dg
0
—fl L ve ey
82 = ; 2 Vad; v

_f‘ quX ;
&n = ad{ e

1
— _ 2 y2
g3_fo [ ( V)dgz XU+QXU}d;

1

¢=0

1
d; - 5(1 - V)O[(XuXv)lé:()

We follow the same procedure to determine the modal frequency
2, and the mode shapes Y, and Y,. However, we cannot find the
convergent solutions by applying the procedure only once for both
directions ¢ and 1 because we wish to have a convergent solution
suchthat || Q) —Q' || < €. Therefore,an iterationschemeis appliedto
achieve a convergentsolution for both frequency and mode shapes.

Procedure

We summarize our iteration scheme in the following steps:

1) In the 5 direction, prescribe the mode shape pair Y? and Y? a
priori, k = 0.

2a) Incrementk, Y* = Ylﬁ‘*l and Y¥ = Yi-1

2b) Obtain the ODEs in terms of Xk " and X* as shown in
Eqgs. (8) and (9). Numerically solve for Q" such that it results in
a zero determinant. The wave coefficients in X* and X* are deter-
mined under QF.

2¢) Using mode shape function X* and X* as calculatedin step 2b,
obtain the ODEs in terms of Y* and Yf as shown in Egs. (22)
and (23). Numerically solve for % such that it results in a zero
determinant. The wave coefficientsin Y* and Y* can be determined.

3) Check convergence between Q and Q. If |Q) — Q' || < e,
we stop the iteration. In our calculation, we set € = 107>, Otherwise,
gotostep2a, k=k + 1.

Examples

Farag and Pan® considered three rectangular plates as shown in
Fig. 2: CCCC, CCCEF, and CFCF cases. Plate dimensions are 1.0 m
in length, 1.2 m in width, and 2.5 mm in thickness. Young’s modu-
lusis E =70 x 10° N/m? and density is 2700 kg/m®. Poisson’s ratio
is v =0.33. To validate this method, we will calculate natural fre-
quencies and mode shapes for the in-plane plate vibration problems
investigated by them.

To start our approach, we need to discuss how to choose the initial
assumed mode shape pair in either the ¢ or n direction. Generally
speaking, those mode shapes must satisfy two conditions. First,
they should be admissible functions, which satisfy the geometric
boundary conditions. Second, the resulting coupling coefficients in
Eq. (8) orin Eq. (22), that is, a, or f,, cannotbe zero. This ensures
that we solve the coupledmode shapes as discussedin the preceding

Table1 Admissible rod mode shape functions

Boundary condition Mode shape function

CCCC Wy, = sin(mmx /1)
CCCF W, = sin[(2m — 1)zx /21]
CFCF W, = cos(mmx/l)
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Table 2 Natural frequencies of in-plane vibration of a rectangular plate
with CCCC boundary conditions

9
Mode shape Mode shape NASTRAN Present Farag and Pan
for u for v frequency, Frequency, Error, Frequency, Error,
Mode no. mxn mxn Hz Hz % Hz %
1 2x2 1x1 2658 2667 0.3 2671 0.5
2 1x1 2x2 2898 2909 0.4 2914 0.6
3 1x2 2x1 3260 3280 0.6 3349 2.7
4 1x2 2x1 4024 4089 1.6 4198 4.3
5 1x3 2x2 4268 4327 1.4 4404 3.2
6 2x3 1x2 4404 4437 0.7 4607 4.6
by 1.2 Y.
clamped OSTRNN stutststatal SANNNN~LLL L
RN s NN A
TS s NN A
3 g TSN e ST
Q a N S S A NN T
£ £ W AN
§ CCCC |3 LERRARARA ER SRR EASSSTY MY IRARARARMETAAVINE
© © SRR PR B e
IR R RN R AR SRR NN
X AN AN NN YRS
> AN NS T SNNNNNNN
LA T N N — A SN NNNN
clamped L N ——— A ANNANNN
it | A e VLI I
BRSSO AN SRR TUNNANNNN
N snussta euunnnnihel IR ROORSHOEE SN
: 0
free O0 0.5 1 0 0.5 1
Mode 1; w =2667 Hz Mode 4; w = 4089 Hz
3 2 u(2 x 2); v(1x 1) u(1x2);v2x1)
o [« R
_g CCCF (_Ev 1.2 P e 'l/'/ll;'v 12 P e Lo NI
© © RSO I AR L NN
x G R
- VNN 2NN L L R
SAANNNNTTT Ly, “HH//’“\,MHM.
clamped SN AR T
C N s AT 2 NRNN RN T o
“ 0'6 P e S 0'6 PSS
y free ////////—w::::::: r:/”///,':':\\\‘“;
' > BB AR AR
VLYY e S AHON S
FEREZ 7RI NN
ko] O 'i;;;/”’“‘:§\§§§§§: \\\\\\\\M‘,;‘»j:jﬁ“j
8 8 iﬁmfff,"‘:mm: NN A
% CFCF g 0 rrrbre . Caaa T O'~~~~~~~~———————'-
° © 0 0.5 1 0 0.5 1
X N Mode 2; w =2909 Hz Mode 5; w = 4327 Hz
free u(l x1); v(2x%x2) u(1 x 3); v(2 % 2)
Fig.2 Three configurations of rectangular plate under in-plane vibra- L — P 12— N
tion. : SO EE S N0
vt } { ttr,
AR RN
section. The one-dimensional rod vibration mode shapes are used S I AN
to initialize the iteration calculation and are tabulated for different 06 0.6l LTI
boundary conditions in Table 1. These rod mode shape functions ) - RGN Fypoamitt
are admissible functions in the x and y directions. Because of the ‘:::?N; ““,/,;__
orthogonality of trigonometric functions as shown in Table 1, the L H H“’\ .
summation of modal number for the assumed pair of ¥" and ¥’ has : A A R R R FINNNN
to be an odd number to satisfy the second criterion for the initial 0 o | i
0 0 0.5 1

mode pair. The condition Mod(m +n) =1 must hold to achieve
nonzero value of a, or f,. Our numerical calculationresults validate
this remark.

Results

We tabulated the first six natural frequencies of in-plane rect-
angular plate vibration. All three boundary condition cases were
considered. Table 2 shows the natural frequencies of a clamped
rectangular plate (CCCC) case. Our results are compared to the so-
lutions of NASTRAN and to those of Farag and Pan. Compared
to NASTRAN results, the maximum error is 1.6% in our analysis
and 4.6% for Farag and Pan’s. Thus, improved accuracy has been
achieved in our analysis because the plate mode shapes are more
accurate.

Table 3 shows the frequency results of the CCCF case. The error
increases for both analyses compared to NASTRAN because a free
edge is introduced. Again, the maximum erroris 3.9% in our analy-
sis and 8.4% for theirs. However, the maximum errorin our analysis
are still lower than those of Farag and Pan.’ Table 4 shows the fre-
quency results of the CFCF case. Our results are improved over
Farag and Pan’s. The maximum error in Farag and Pan’s results

Mode 3; w = 3280 Hz
u(1x2);0v2x1)

Mode 6; w = 4437 Hz
u(2 X 3); v(1 X 2)

Fig.3 Mode shapes of in-plane vibration of a rectangular plate with
CCCC boundary conditions.

reaches 12% compared to 4.5% in our analysis. We demonstrate
mode shape functions of the first six modes shapes in Figs. 3-5 for
all three cases. These are plotted in vector form. The origin of the
arrow denotes the location, and the length of the arrow denotes the
magnitude of the resultant displacements. This gives us a visual-
ization of the mode shapes for in-plane plate motion. As shown in
Fig. 3 for the CCCC case, we can observe some node lines in which
displacementis dominant only in one direction. The displacements
are symmetric with respect to those lines for the first, second, fifth,
and sixth modes. However, for the third and fourth modes, the shear
(rotation) mode shape is easily identified. The third mode corre-
sponds to the rotation with respect to the center of a plate. For
the fourth mode, the displacements behave similarly to the case in
which the extension and compression occurs along two diagonals
of a plate. For the CCCF case, as shown in Fig. 4, the mode shape
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Table 3 Natural frequencies of in-plane vibration of a rectangular plate

with CCCF boundary conditions

Mode shape Mode shape NASTRAN Present Farag and Pan”
for u for v frequency, Frequency, Error, Frequency, Error,

Mode no. mxn mxn Hz Hz % Hz %
1 2x2 Ix1 1803 1811 0.4 1892 4.9
2 1x1 2x2 2656 2674 0.7 2727 2.7
3 1x2 2x1 2794 2845 1.8 3026 8.4
4 1x2 2x1 3392 3524 3.9 3596 6.0
5 2x3 1x2 3479 3504 0.7 3624 4.2
6 1x3 2x2 3704 3757 14 3868 4.4

Table4 Natural frequencies of in-plane vibration of a rectangular plate with CFCF
boundary conditions; modal number 0 denotes the rigid mode

' 9
Mode shape Mode shape NASTRAN Present Farag and Pan
for u for v frequency, Frequency, Error, Frequency, Error,
Mode no. mxn mxn Hz Hz % Hz %

1 2x3 1x0 1449 1455 0.4 1531 7.0

2 2x2 1x1 2511 2520 0.4 2682 6.0

3 1x0 2x1 2567 2639 2.8 2697 5.0

4 1x1 2x0 2637 2662 0.95 2994 12.0

5 1x1 2x0 3037 3187 4.5 3122 3.0

6 1x2 2x1 3061 3146 2.8 3390 10.0
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Fig. 4 Mode shapes of in-plane vibration of a rectangular plate with
CCCF boundary conditions.
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Fig.5 Mode shapes of in-plane vibration of a rectangular plate with
CFCF boundary conditions.
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displacements showed the different results compared to the CCCC
case. Because of an introduction of a free edge, the displacements
are smaller close to the clamped edges and become larger when
reaching the free edge. The mode shapes lose some symmetries.
The symmetric shape exists only in the vertical direction, as shown
in the first and fifth modes of the CCCF case. For the CFCF case, as
shown in Fig. 5, similar results are obtained compared to the CCCC
case. We can identify the node lines and the properties of symmetry
easily. The displacementsbecome yet larger when reachingtwo free
edges.

Conclusions

Based on the Kantorovich-Krylov method, we computed the nat-
ural frequencies and natural modes of rectangular plates. The an-
alytical results were validated using both NASTRAN and results
from the literature’ Improved accuracy for the natural frequency
calculations for three cases was achieved when compared to avail-
ableresults from literaturerelativeto the NASTRAN analysis.Mode
shapes were expressed as a linear combination of wave propagation
where the wave coefficients were computed using a numerical itera-
tion scheme. The mode shapes were given in the analytical forms in
which the wave coefficients were determined through a numerical
iteration scheme:

1) As shown in Table 2 for the CCCC case, the maximum error of
our analysis was 1.6 and 4.6% for Farag and Pan’s” analysis. Both
analyses predict natural frequency well.

2) As shown in Table 3 for the CCCF case, the maximum error
of our analysis was 3.9 and 8.4% for Farag and Pan’s” analysis. The
errors in the CCCF case increase for both analyses. The introduction
of a free edge increases the displacement coupling because a force
boundary condition exists.

3) As shown in Table 4 for the CFCF case, the maximum error
continues to increase, 4.5% in our analysis and 12% in Farag and
Pan’s.’ As more free edges are added, the coupling effects between
mode shapes increase.

Overall, more accurate frequency calculations were achieved in
our analysis relative to the NASTRAN analysis. The plots of mode
shapes provide us with a visualization of displacement field for
in-plane plate vibration. Therefore, we have successfully solved
the in-plane vibration problem of rectangular plates. The present
analysis lays the groundwork for future investigation of in-plane
plate vibration coupled with other motions.
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