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Free In-Plane Vibration of Rectangular Plates

Gang Wang¤ and Norman M. Wereley†

University of Maryland, College Park, Maryland 20742

Based onthe Kantorovich–Krylov variationalmethod(Kantorovich,L. V., andKrylov,V. I., ApproximateMethods
of Higher Analysis, Noordhoff International, Groningen, The Netherlands, 1964, pp. 241–357), we analytically
solve for modal frequency and displacement mode shapes of in-plane vibration of rectangular plates with free
and clamped boundary conditions. Free and clamped boundary conditions do not allow closed-form solutions
from partial differential equations. We develop analytical expressions of plate mode shapes consisting of a linear
combination of progressive waves with unknown wave amplitudes. We then use these to calculate the modal
frequencies and the wave amplitudes with analytical mode shape expressions. An iteration scheme is presented to
calculate ef� ciently the natural frequency and corresponding mode shape functions based on the Kantorovich–

Krylov method. Three con� gurations are considered: a plate with four edges clamped, a plate with three edges
clamped and one edge free, and a plate with two parallel edges clamped and the other two edges free. The
� rst six natural frequencies predicted by our approach are validated using NASTRAN and other analyses from
the literature. Improvements in accuracy of the � rst six predicted natural frequencies were achieved using the
Kantorovich–Krylov method when compared against other results in the literature.

Nomenclature
a = length of plate in x direction
b = length of plate in y direction
E = Young’s modulus of plate material
h = plate thickness
k1;2 = two wave numbers in the solution of mode

shape functions
m; n = number of half-wavelengths for mode shapes
N³ = nondimensionalnormal stress in x direction
N³;´ = nondimensionalshear stress
N´ = nondimensionalnormal stress in y direction
u = displacement in x direction
v = displacement in y direction
Xu = separable component of a mode shape

function for u in x direction
Xv = separable component of a mode shape

function for v in x direction
Yu = separable component of a mode shape

function for u in y direction
Yv = separable component of a mode shape

function for v in y direction
® = ratio of length in x and y direction
³ = nondimensional length in x direction
´ = nondimensional length in x direction
º = Poisson’s ratio of plate
½ = density of plate
Ä = nondimensionalfrequency
Äx = nondimensionalfrequency solution in x direction
Äy = nondimensionalfrequency solution in y direction
! = excitation frequency
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Introduction

F REE in-plane vibration of a rectangular plate is investigated.
The transverse bending vibration of plates has received much

attention in the literature.1;2 Results are available for transverse
bending frequencies and mode shapes for a wide range of plate
shapes and boundary conditions. Usually, for the rectangular plate
case, plate bending mode shapes are the expansion of beam bend-
ing modes in both the x and y directionswith weighted coef� cients
calculated using the Rayleigh–Ritz method. The closed-form plate
bendingmode shapes are availableonly for the Levy type of rectan-
gularplates, that is, at least two paralleledgeswith simply supported
boundaryconditions(see Ref. 3). However, in addition to transverse
bendingor out-of-planevibration,a plate can also undergo in-plane
vibration,namely, plane longitudinaland shear motions. Improving
the understanding of modal characteristics of in-plane plate vibra-
tions is a key goal of this paper. In-plane plate mode shapes are very
important for the analysis of complicated plate structures, such as
a folded plate in space structures4 and sandwich plates.5 For our
particular interests, we need to calculate the bending frequencies
and response of three-layered sandwich plate structures, where a
viscoelastic core is sandwiched between two face plates for damp-
ing augmentation.The energy is dissipatedby shear deformationsin
the viscoelasticdamping core, which causes a coupling of in-plane
and bending motions for each face plate. The analysis of this type
of plate structure involves both in-plane and bending mode shapes
when using assumed modes methods. As discussed in Ref. 5, the in-
planemodes are critical when evaluatingthe bending frequenciesof
sandwich plates. Therefore, free in-plane plate vibration becomes
the topic of this paper. Our goal is to calculate the in-plane plate
mode shapes directly, instead of using rod mode shapes in both the
x and y directions.We have shown that these updated in-planeplate
mode shapes improve the accuracy of frequency predictions and
lower the computationalcost due to the large number of rod modes
involved in our sandwich plate analysis.6

Few studies have focused on the study of in-plane vibration of
rectangularplates. Closed-formsolutionsexist only for simply sup-
ported boundary condition cases as shown in Ref. 7. However,
clamped and free boundary conditions are typically encountered in
applications. Recently, Farag and Pan8 presented forced responses
of in-plane vibration of a rectangularplate under in-plane point ex-
citation with four-edge clamped boundary conditions. The modal
frequencieswere calculatedby using the � rst 10 assumed rod mode
shapes in both the x and y directions. This involves an eigenvalue
problem with a matrix of order 200. The analysis was validated us-
ing NASTRAN with 480 four-nodeplane elements. In a subsequent
study, Farag and Pan9 discussed modal characteristics of a rectan-
gular plate with two parallel edges clamped, whereas the other two
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edges are either both clamped (CCCC), both free (CFCF), or one
clamped and one free (CCCF). For these rectangularplate con� gu-
rations, two parallel edges are always clamped. Then sine functions
can be assumed to be the one separable part in the solution of the
mode shape function. Substituting this solution into the governing
equations of motion, the two-dimensional problem can be reduced
to one-dimensional problem in terms of another part of separable
solution. An iteration scheme was developed to calculate modal
frequencies. They presented the natural frequencies for the three
boundary condition cases mentioned and each validated by using
NASTRAN solutions. The maximum error in the in-plane vibra-
tion modal frequency was 4.6% for CCCC case, 8.4% for CCCF
case, and 12% for CFCF case, in which the � rst eight modes were
considered. The coef� cients of mode shapes were determined nu-
merically by an iteration scheme, but these coef� cient results were
not presented.

In our analysis, we also examine modal characteristicsof a rect-
angular plate undergoing in-plane vibration. We will calculate the
natural frequencies and the mode shapes for displacement u and
v based on the Kantorovich–Krylov method.10 We will directly
solve for modal frequencies and corresponding mode shapes in-
stead of using rod mode shapes to approximate both the x and
y directions. Separable solutions were assumed to solve analyti-
cally for all displacements. This method has been successfully ap-
plied to plate bending vibration analysis.11 The equilibrium posi-
tion of a mechanical system is the position corresponding to the
minimum potential energy.Thus, the problemof solving the bound-
ary value problem for the partial differential equations (PDEs) is
equivalent to the problem of � nding the function minimizing the
integral of total potential energy. This equivalence enables us to
solve the PDEs by minimizing the total energy. The most familiar
method is the Rayleigh–Ritz method. However, this method pro-
vides only approximate solutions of PDEs because the assumed
mode shapes are only admissible functions. The Galerkin method
can provide good approximations for PDEs, if we can � nd a func-
tion such that it satis� es both the geometric and force boundaries.
Fortunately, the Kantorovich–Krylov variational method provides
a method of determining higher-order solutions for PDEs. This
method can reduce PDEs to ordinarydifferentialequations(ODEs),
so that we can solve these ODEs to determine the mode shape func-
tions analytically.An iteration scheme is developed to calculate the
modal frequenciesandcoef� cientsof thecorrespondingmodeshape
functions.

Our approach for in-plane vibration analysis will be validated
using NASTRAN results and the results in Ref. 9. We will consider
three con� gurationsof rectangularplates: CCCC, CCCF, and CFCF
cases. The � rst six modal frequencies of in-plane vibration will be
calculated and compared to available results. The mode shapes will
be plotted in vector form to show the natural modes of in-plane
vibration of rectangularplates.

Analysis
In this section, we present the expressions describing potential

energy of in-plane rectangular plate vibrations under the harmonic
excitation. The variation of the total energy is shown, which corre-
sponds to the governing equations and associated boundary condi-
tions for in-plane plate vibrations.Separable solutions are assumed
for in-plane displacements u and v. Based on the Kantorovich–

Krylov10 iterative method, mode shapes and modal frequenciescan
be iteratively calculated until convergence is achieved.

System Energy and Equations
The rectangularplate is illustrated in Fig. 1. The potential energy

for in-plane vibration is
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Fig. 1 Schematic of rectangular plate under in-plane vibration.

We took the variationof the precedingtotal energyand performed
integration by parts, assuming that the variation of the total energy
is equal to zero. This yields the governing equations and associated
boundary conditions for in-plane plate vibration. Here, nondimen-
sional results are shown:
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Note that Eq. (2) is the weak or variational form of the PDEs,12

together with all possible boundary conditions existing along four
edges for in-plane plate vibration.

Solution
Determiningplatemodeshapesu and v satisfyingEq. (2) is equiv-

alent to solving the boundary value problem for in-plane plate vi-
bration. We wish to � nd functions that exactly satisfy Eq. (2). This
gives us the closed-form solutions of in-plane plate vibration. This
method is called the Kantorovich–Krylov10 method. A numerical
scheme is used to solve a set of ODEs with associated boundary
conditions to achieve a value of zero for the variation of total en-
ergy. To do this, we assume a separable solution for displacements
u and v for a mode (mode number is neglected in all derivations):

u.³; ´/ D Xu.³ /Yu.´/ (3)

v.³; ´/ D Xv.³ /Yv.´/ (4)

If we assume that the pair Yu and Yv are prescribed a priori, we
will obtain

±u D Yu±Xu (5)

±v D Yv±Xv (6)
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Substituting Eq. (3–6) into Eq. (2) and performing integration
along ´ direction yields
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The coef� cients ak and bk are
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Equation (7) corresponds to two coupled ODEs and associated
boundary conditions in terms of Xu and Xv . The two equations
are
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The boundary conditions at ³ D 0 and 1 are needed. For a clamped
edge

Xu D Xv D 0 (10)

For a free edge
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We now have two ODEs along with associated boundary condi-
tions in terms of Xu and Xv . Before we solve these, we list some
observations:

1) From the earlier expressions of coef� cients, we note that
a2 D ¡b2. This is due to the physical symmetric property of cou-
pling terms in the PDEs. Mathematically, this can be illustrated by
performing integration by parts for either a2 and b2.

2) Two ODEs in Eqs. (8) and (9) are coupled only if nonzero
values of a2 and b2 exist.

3) The boundary conditions are always coupled in terms of Xu

and Xv , except in the case of a clamped edge. Therefore, it is possi-
ble to � nd the uncoupledmode shapes for four clamped edges if the
coupling terms in two ODEs are zero, in which a2 and b2 are zero.
However these mode shape functions are meaninglessbecause they
are only admissible functions. However, when a free edge is intro-
duced,uncoupledmode shapesno longerexistbecausetheboundary
conditions [Eqs. (11) and (12)] are coupled in terms of Xu and Xv .

Uncoupled and coupled mode shapes were also discussed by
Farag and Pan.9 We will concentrate on solutions of coupled mode
shapes. In-plane plate vibration should be coupled for both mode
shapes of u and v becauseof nonzeroPoisson ratio effects and shear
deformation,which is a functionof both displacementsu and v. We
can rewrite Eq. (8) in terms of either Xu or Xv , as
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d³ 4
C 2p

d2 Xv

d³ 2
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p D 1
2 [¡.a2b2=a1b1/ C b3=b1 C a3=a1]; q D a3b3=a1b1

The solutions for Xu and Xv can be written as a wave expansion:

Xu D c1e
¡k1³ C c2e

k1³ C c3e
¡k2³ C c4ek2³ (15)

Xv D d1e
¡k1³ C d2ek1³ C d3e

¡k2³ C d4ek2³ (16)

Here, c1 , c2, c3, and c4 are four independent wave coef� cients,
and d1, d2 , d3, and d4 can be expressed in terms of c1, c2 , c3, and c4

from Eq. (8). Also, k1 and k2 are characteristicroots of Eq. (13) and
are given by

k2
1 D ¡p C

p
p2 ¡ q (17)

k2
2 D ¡p ¡

p
p2 ¡ q (18)

For plate in-plane vibration,There are two kinds of waves traveling
across the plate. One is a longitudinal wave along the x and y di-
rections; the other is a shearing wave. This means that we have two
different wave numbers as in Eqs. (17) and (18). Because there is
no damping introduced in the system, the roots k1 and k2 can not be
complex numbers. The analytical expressions of mode shapes Xu

and Xv are given hereafterbased on the possible signs of character-
istic roots k2

1 and k2
2 .

1) If k2
1 > 0 and k2

2 > 0, then

Xu D c1 sinh.k1³ / C c2 cosh.k1³ / C c3 sinh.k2³ / C c4 cosh.k2³/

Xv D d1 sinh.k1³ / C d2 cosh.k1³ / C d3 sinh.k2³ / C d4 cosh.k2³ /

2) If k2
1 > 0 and k2

2 < 0, then

Xu D c1 sinh.k1³ / C c2 cosh.k1³ / C c3 sin.jk2j³ / C c4 cos.jk2j³ /

Xv D d1 sinh.k1³ / C d2 cosh.k1³ / C d3 sin.jk2j³ / C d4 cos.jk2j³ /

3) If k2
1 < 0 and k2

2 < 0, then

Xu D c1 sin.jk1j³ / C c2 cos.jk1j³ / C c3 sin.jk2j³ / C c4 cos.jk2j³ /

Xv D d1 sin.jk1j³ / C d2 cos.jk1j³ / C d3 sin.jk2j³ / C d4 cos.jk2j³ /
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4) If k2
1 D k2

2 < 0, then

Xu D c1 sin.jk1j³/ C c2 cos.jk1j³ / C c3³ sin.jk1j³ /

C c4³ cos.jk1j³ /

Xv D d1 sin.jk1j³ / C d2 cos.jk1j³ / C d3³ sin.jk1j³ /

C d4³ cos.jk2j³ /

The sinh and cosh components correspond to near-� eld (decay)
waves and the sine and cosine components correspond to far-� eld
(propagation) waves as discussed by Doyle.13 This mathematical
representationof mode shapesmatches the propertiesof wave prop-
agationof in-planeplate vibration.For example,we considera plate
with a clamped edge at ³ D 0 and a free edge at ³ D 1. The expres-
sions of mode shape functions Xu and Xv are assumed same as
the second case for k2

1 > 0 and k2
2 < 0. When these functions are

substituted into corresponding boundary conditions as shown in
Eqs. (10–12), this yields
2
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where
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When nontrivialsolutionsof Eq. (19) are assumed the resultingfour
by four determinant is a function in terms of unknown parameter
of Ä only. First, we numerically determine an Äx resulting in a
zero determinant to obtain the modal frequency in the ³ direction.
Then, the wave coef� cients c1 , c2, c3 , and c4 can be solved for this
particular frequency Äx . Finally, we can construct the mode shape
functions Xu and Xv . The next step is to assume that the Xu and Xv

pair is prescribed a priori. Similarly, we obtain

±u D Xu±Yu (20)

±v D Xv±Yv (21)

substitutingEqs. (3), (4), (20), and (21) into Eq. (2) and performing
integration along the ³ direction. This is the same procedure as we
did in the ´ directions.We show the � nal two ODEs and associated
boundary conditions:
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We follow the same procedure to determine the modal frequency
Äy and the mode shapes Yu and Yv . However, we cannot � nd the
convergent solutions by applying the procedure only once for both
directions ³ and ´ because we wish to have a convergent solution
suchthatkÄi

x ¡Äi
y k · ². Therefore,an iterationschemeis appliedto

achieve a convergent solution for both frequencyand mode shapes.

Procedure
We summarize our iteration scheme in the following steps:
1) In the ´ direction, prescribe the mode shape pair Y 0

u and Y 0
v a

priori, k D 0.
2a) Increment k, Y k

u D Y k ¡ 1
u , and Y k

v D Y k ¡ 1
v .

2b) Obtain the ODEs in terms of X k
u and X k

v as shown in
Eqs. (8) and (9). Numerically solve for Äk

x such that it results in
a zero determinant. The wave coef� cients in X k

u and X k
v are deter-

mined under Äk
x .

2c)Usingmode shapefunction X k
u and X k

v as calculatedin step 2b,
obtain the ODEs in terms of Y k

u and Y k
v as shown in Eqs. (22)

and (23). Numerically solve for Äk
y such that it results in a zero

determinant.The wave coef� cients in Y k
u and Y k

v can be determined.
3) Check convergence between Äk

x and Äk
y . If kÄi

x ¡ Äi
yk · ²,

we stop the iteration.In our calculation,we set ² D 10¡5. Otherwise,
go to step 2a, k D k C 1.

Examples
Farag and Pan9 considered three rectangular plates as shown in

Fig. 2: CCCC, CCCF, and CFCF cases. Plate dimensions are 1.0 m
in length, 1.2 m in width, and 2.5 mm in thickness.Young’s modu-
lus is E D 70 £ 109 N/m2 and density is 2700 kg/m3 . Poisson’s ratio
is º D 0:33. To validate this method, we will calculate natural fre-
quencies and mode shapes for the in-planeplate vibrationproblems
investigated by them.

To start our approach,we need to discusshow to choose the initial
assumed mode shape pair in either the ³ or ´ direction. Generally
speaking, those mode shapes must satisfy two conditions. First,
they should be admissible functions, which satisfy the geometric
boundary conditions.Second, the resulting coupling coef� cients in
Eq. (8) or in Eq. (22), that is, a2 or f2 , cannot be zero. This ensures
that we solve the coupledmode shapes as discussed in the preceding

Table 1 Admissible rod mode shape functions

Boundary condition Mode shape function

CCCC Wm D sin.m¼x=l/
CCCF Wm D sin[.2m ¡ 1/¼x=2l]
CFCF Wm D cos.m¼x=l/
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Table 2 Natural frequencies of in-plane vibration of a rectangular plate
with CCCC boundary conditions

Present Farag and Pan9
Mode shape Mode shape NASTRAN

for u for v frequency, Frequency, Error, Frequency, Error,
Mode no. m £ n m £ n Hz Hz % Hz %

1 2 £ 2 1 £ 1 2658 2667 0.3 2671 0.5
2 1 £ 1 2 £ 2 2898 2909 0.4 2914 0.6
3 1 £ 2 2 £ 1 3260 3280 0.6 3349 2.7
4 1 £ 2 2 £ 1 4024 4089 1.6 4198 4.3
5 1 £ 3 2 £ 2 4268 4327 1.4 4404 3.2
6 2 £ 3 1 £ 2 4404 4437 0.7 4607 4.6

Fig. 2 Three con� gurations of rectangular plate under in-plane vibra-
tion.

section. The one-dimensional rod vibration mode shapes are used
to initialize the iteration calculation and are tabulated for different
boundary conditions in Table 1. These rod mode shape functions
are admissible functions in the x and y directions. Because of the
orthogonality of trigonometric functions as shown in Table 1, the
summation of modal number for the assumed pair of Y m

u and Y n
v has

to be an odd number to satisfy the second criterion for the initial
mode pair. The condition Mod.m C n/ D 1 must hold to achieve
nonzerovalue of a2 or f2 . Our numerical calculationresultsvalidate
this remark.

Results
We tabulated the � rst six natural frequencies of in-plane rect-

angular plate vibration. All three boundary condition cases were
considered. Table 2 shows the natural frequencies of a clamped
rectangularplate (CCCC) case. Our results are compared to the so-
lutions of NASTRAN and to those of Farag and Pan.9 Compared
to NASTRAN results, the maximum error is 1.6% in our analysis
and 4.6% for Farag and Pan’s. Thus, improved accuracy has been
achieved in our analysis because the plate mode shapes are more
accurate.

Table 3 shows the frequency results of the CCCF case. The error
increases for both analyses compared to NASTRAN because a free
edge is introduced.Again, the maximum error is 3.9% in our analy-
sis and 8.4% for theirs. However, the maximum error in our analysis
are still lower than those of Farag and Pan.9 Table 4 shows the fre-
quency results of the CFCF case. Our results are improved over
Farag and Pan’s. The maximum error in Farag and Pan’s results

Mode 1; ! = 2667 Hz
u(2 ££ 2); v(1 ££ 1)

Mode 2; ! = 2909 Hz
u(1 ££ 1); v(2 ££ 2)

Mode 3; ! = 3280 Hz
u(1 ££ 2); v(2 ££ 1)

Mode 4; ! = 4089 Hz
u(1 ££ 2); v(2 ££ 1)

Mode 5; ! = 4327 Hz
u(1 ££ 3); v(2 ££ 2)

Mode 6; ! = 4437 Hz
u(2 ££ 3); v(1 ££ 2)

Fig. 3 Mode shapes of in-plane vibration of a rectangular plate with
CCCC boundary conditions.

reaches 12% compared to 4.5% in our analysis. We demonstrate
mode shape functions of the � rst six modes shapes in Figs. 3–5 for
all three cases. These are plotted in vector form. The origin of the
arrow denotes the location, and the length of the arrow denotes the
magnitude of the resultant displacements. This gives us a visual-
ization of the mode shapes for in-plane plate motion. As shown in
Fig. 3 for the CCCC case, we can observe some node lines in which
displacement is dominant only in one direction. The displacements
are symmetric with respect to those lines for the � rst, second, � fth,
and sixth modes. However, for the third and fourth modes, the shear
(rotation) mode shape is easily identi� ed. The third mode corre-
sponds to the rotation with respect to the center of a plate. For
the fourth mode, the displacements behave similarly to the case in
which the extension and compression occurs along two diagonals
of a plate. For the CCCF case, as shown in Fig. 4, the mode shape
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Table 3 Natural frequencies of in-plane vibration of a rectangular plate
with CCCF boundary conditions

Present Farag and Pan9
Mode shape Mode shape NASTRAN

for u for v frequency, Frequency, Error, Frequency, Error,
Mode no. m £ n m £ n Hz Hz % Hz %

1 2 £ 2 1 £ 1 1803 1811 0.4 1892 4.9
2 1 £ 1 2 £ 2 2656 2674 0.7 2727 2.7
3 1 £ 2 2 £ 1 2794 2845 1.8 3026 8.4
4 1 £ 2 2 £ 1 3392 3524 3.9 3596 6.0
5 2 £ 3 1 £ 2 3479 3504 0.7 3624 4.2
6 1 £ 3 2 £ 2 3704 3757 1.4 3868 4.4

Table 4 Natural frequencies of in-plane vibration of a rectangular plate with CFCF
boundary conditions; modal number 0 denotes the rigid mode

Present Farag and Pan9
Mode shape Mode shape NASTRAN

for u for v frequency, Frequency, Error, Frequency, Error,
Mode no. m £ n m £ n Hz Hz % Hz %

1 2 £ 3 1 £ 0 1449 1455 0.4 1531 7.0
2 2 £ 2 1 £ 1 2511 2520 0.4 2682 6.0
3 1 £ 0 2 £ 1 2567 2639 2.8 2697 5.0
4 1 £ 1 2 £ 0 2637 2662 0.95 2994 12.0
5 1 £ 1 2 £ 0 3037 3187 4.5 3122 3.0
6 1 £ 2 2 £ 1 3061 3146 2.8 3390 10.0

Mode 1; ! = 1811 Hz
u(2 ££ 2); v(1 ££ 1)

Mode 2; ! = 2674 Hz
u(1 ££ 1); v(2 ££ 2)

Mode 3; ! = 2845 Hz
u(1 ££ 2); v(2 ££ 1)

Mode 4; ! = 3524 Hz
u(1 ££ 2); v(2 ££ 1)

Mode 5; ! = 3504 Hz
u(2 ££ 3); v(1 ££ 2)

Mode 6; ! = 3757 Hz
u(1 ££ 3); v(2 ££ 2)

Fig. 4 Mode shapes of in-plane vibration of a rectangular plate with
CCCF boundary conditions.

Mode 1; ! = 1455 Hz
u(2 ££ 3); v(1 ££ 0)

Mode 2; ! = 2520 Hz
u(2 ££ 2); v(1 ££ 1)

Mode 3; ! = 2639 Hz
u(1 ££ 0); v(2 ££ 1)

Mode 4; ! = 2662 Hz
u(1 ££ 1); v(2 ££ 0)

Mode 5; ! = 3187 Hz
u(1 ££ 1); v(2 ££ 0)

Mode 6; ! = 3146 Hz
u(1 ££ 2); v(2 ££ 1)

Fig. 5 Mode shapes of in-plane vibration of a rectangular plate with
CFCF boundary conditions.
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displacements showed the different results compared to the CCCC
case. Because of an introduction of a free edge, the displacements
are smaller close to the clamped edges and become larger when
reaching the free edge. The mode shapes lose some symmetries.
The symmetric shape exists only in the vertical direction, as shown
in the � rst and � fth modes of the CCCF case. For the CFCF case, as
shown in Fig. 5, similar results are obtainedcompared to the CCCC
case. We can identify the node lines and the propertiesof symmetry
easily.The displacementsbecomeyet largerwhen reachingtwo free
edges.

Conclusions
Based on the Kantorovich–Krylov method, we computed the nat-

ural frequencies and natural modes of rectangular plates. The an-
alytical results were validated using both NASTRAN and results
from the literature.9 Improved accuracy for the natural frequency
calculations for three cases was achieved when compared to avail-
able results from literaturerelativeto theNASTRAN analysis.Mode
shapes were expressed as a linear combinationof wave propagation
where the wave coef� cients were computedusing a numerical itera-
tion scheme. The mode shapes were given in the analytical forms in
which the wave coef� cients were determined through a numerical
iteration scheme:

1) As shown in Table 2 for the CCCC case, the maximum error of
our analysis was 1.6 and 4.6% for Farag and Pan’s9 analysis. Both
analyses predict natural frequency well.

2) As shown in Table 3 for the CCCF case, the maximum error
of our analysiswas 3.9 and 8.4% for Farag and Pan’s9 analysis.The
errors in the CCCF case increasefor both analyses.The introduction
of a free edge increases the displacement coupling because a force
boundary condition exists.

3) As shown in Table 4 for the CFCF case, the maximum error
continues to increase, 4.5% in our analysis and 12% in Farag and
Pan’s.9 As more free edges are added, the coupling effects between
mode shapes increase.

Overall, more accurate frequency calculations were achieved in
our analysis relative to the NASTRAN analysis. The plots of mode
shapes provide us with a visualization of displacement � eld for
in-plane plate vibration. Therefore, we have successfully solved
the in-plane vibration problem of rectangular plates. The present
analysis lays the groundwork for future investigation of in-plane
plate vibration coupled with other motions.
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